Boft FORTH Refearence Manual

Release Version: 2.4
Date: February 3, 1986

Preliminary




~Zoft FORTH Reference Manual

CONTENTS
T L I 1-1
£*5 9= BUrpoRe OF SOLE BONIHG cosvswussnit e st taas s b s 1-1
b WCUEERRG: SOLE WOREE MalTbi . o snmais mamiia b oo L i 1-1
The Development Process....................ooo.... B TR g g e i 2=1
2:1. Developing the ApPLiCAELON..u.cn.norsssonsnsesennn 2o 2-1
1 B | New FORTH WOLAS s e in tisios o nnnsonnnssnmesessn 2=1
2el ol Soft FORTH Application Development.........,......... 2-1
2.2 Application Description File LY B o e 2=2
2.3 Using the Soft FORTH =2 o LR A e 2-2
@t Debugaing WAEK Solt ORI, c.silvonvindatioin g i o e 2-3
2.4.1 SRR el S O KRR o e e mudam e e 2-4
2.4.2 DEBHECRROE BRI L . e pon s s oS e st T 2—4
2.5 Copying the RoM 5551 T [t e e e e R 2-4
8 RAMPLE SORSION. e i s vk o s 515 e it g R e e 2=4
SOE HE BOAUEE 0 o gt s 8 R e A e et e -1
ol CRbLING BASTO. onomindevme s s vh e e e s e 3-1
e R BELOEG s s e s S s e 3-1
29 Appiication PORTH-TYEE HAM BI1E. o vammsnmnsman oo bl Lo 3-2
TNR1ANEnEation DEEALLE: oot uuieassimnm v s es s s s C 4-1
4.1 The 64K RAM module............. BER R e R e 4=-1
tes BUP FOLNEL, ouwenoiohimmiin i e sieie s n i oy M ia'e 4=1
4.2.1 AOF DECALIE oo vcomsammsia sn oa o s sidiols oia bt a0 4-2
4.2.2 SRSIC Keyword Combilation . ivieseiiis sonnn o ronmms 4-2
4.2.3 PDE EXOUILE o o, s mn o coretois wia it sio by e s oy e 4=3
2oy WOrE HORGEESS ool 6oieim noemmm s e S e o e T 4=3
B ALLOCIEER ROSOURCES e suoienioimmiesiosin s iim ot s S e Lot 4-6
4.4.1 LEX ID's and Token Numbers..... P AT A e R e e e e 4=6
4.4.2 The Unique FORTH-Type RAM File.................... 0" 4-6
4.5 Pramitives. . .o ST R W B0 o art m EE G 4-7
S0 CHACCHUMS . ooz v wissemanaga s oL T R R e s B 4-9
4.6.1 Implementation of CHECKSUMS................... ... 4-9
$-8e2  Usdng CHECRBUMS. ooewmuvy s siims s a o o emmims el 4=-11
4.6.3 Limitations and Precautions of CHECKSUMS.........0... 1-11
LImitations in SOft FORTH. .« uuuvvuevnonnoeessnesnssnsemnmn .. 5-1
3. Ealling BRaEe . e T e O R e R e e T 5-1
5.2 Calling Other FORTH-based Applications.........ouvuemmnnn ... . 5-1
5.3 calls from the Forth/Assembler ROM............ounnnnnn .. 0 5-1
L R 6-1
6.1 Words not present in Soft ERECT ] oo et s o e T - 6-1
1




6.2 New Words present CHLY In Soflmommn WS .. oo oo
6.3 Words Which Changed in soft POREH o v wmes socersiw v g L e
e Ll e e e e T
6.3.2 BT RN 1 i
6.3.3 s SR SO0 T OO S e i e
6.3.4 S U
6.3.5 L T e S L CHLLE To o RS
6.3.6 GEOW and PERENICS s 0 0 s S Sy e A
G.3.7 THEERPRET, ooy suniciyni oo mipess e e S
6.3.8 T R S
6.3.9 STRING-ARRAY. ..... R S T e R e e e
6.3.10 et TR N s s < .
L O NN e e
6.4 Words which check for writes 2= ol S e e R e
FORTH/Assembler Definitions for S R e TP s o mp e

= e

mm?&mm
1
L s oo

1

(e I
I I T
v Lnn

GO oy
| |
0~ ~] ;

=J
I
=




CHAPTER 1
Introducticon

1.1 The Purpose of Soft FORTH

The purpose of Soft FORTH is to allow the c¢reation of soft-configured
ROM based applications written wholly or partially in FORTH. The
programs and procedures provide a great deal of flexibility in the
creation of FORTH-based custom ROM applications with a minimum of
hassle. Soft FORTH does have some limitations. Additional steps may be
Necessary to ensure that applications will correctly compile and run,

The use of Soft FORTH eliminates the need for the FORTH/Assembler ROM to
be present for the application to run. Any number of these Soft FORTH-
based applications are able to co-exist in the HP-71.

Each FORTH-based application must contain a version of the Soft FORTH
kernel. This kernel is provided on a 16K byte chip which contains the
Soft FORTH system, Soft FORTH initialization, and poll handling. This
then 1limits the size of FORTH-based applications to 48K in a 64K custom
ROM.

1.2 cCurrent Soft FORTH version

The current wversion of Soft FORTH as of %G% is version E (VER$=SFTH:E).

Introduction Page 1-1
<<Preliminary>>




o s i e e e . o o e ——

CHAPTER 2
The Development Process

2.1 Developing the Application

The desired FORTH-based application is developed using the (hard-
addressed) FORTH/Assembler ROM development system, as well as any LEX,
BASIC, or BIN files that are to be included in the final application
ROM.

2.1.1 HNew FORTH Words

Some additional FORTH words are necessary to correctly compile a Soft

FORTH application. For example, CFA's (Code Field Addresses) of words
ccmplled into a colon definition wvia "," (COMMA} must instead use a new
word REL" (COMMA-RELATIVE.) This ensures that the offset to the

desired word is compiled. The standard "," (COMMA) is still used to
compile absoclute values (i.e. a literal like 5) into a definition.

Since the appllcatlmn is developed originally in the FORTH/Assembler ROM
environment, versions of these new words are requlrad The definitions
to be used wlth the FORTH/Assembler ROM are listed in the last chapter
of this document. Using these words throughout the development of the
application simplifies the transition to the Soft FORTH environment and
avoids the error-prone process of changing the application code to move
to Soft FORTH.

2.1.2 Soft FORTH Application Development

The application is written and tested using the FORTH/Assembler ROM and
the Soft FORTH word definitions listed in the last chapter of this
document.

The Soft FORTH Custom ROM process requires a 64K plug-in RAM module for
the Custom ROM image, the Soft FORTH software, and the FORTH/Assembler
ROM. 48K byte FORTH applications need an additional 16K bytes of RAM
which can be separated in an IRAM.

The Soft FORTH software includes the following files:

SFTFORTH48: Soft FORTH kernel, debug version, for 32K byte or
smaller FORTH applications.

SFTFORTHG64: Soft FORTH kernel, debug wversion, for 48K byte FORTH

The Development Process Page 2-1
<<Preliminary>>




applications.
ROMFORTH: Soft FORTH kernel, same as final ROM kernel.

FORTHEAD16, FORTHEAD32: This file contains all of the word headers for
the words contained in the Soft FORTH kernel. FORTHEAD16 is loaded inte
the last 16K of the 64K RAM for applications of less than 32K bytes, or
in the 16K RAM module for 48K applications. Headers for new words
defined in the FORTH-based application are also compiled into FORTHEAD.
If more than 16K bytes of headers are needed, FORTHEAD32 can be loaded
into a 32K byte RAM instead of FORTHEADILG. These instructions assume
use of FORTHEAD16 for simplicity. The final Soft FORTH image will be
the same with either FORTHEAD file.

2.2 Application Description File (ADF)

All Soft FORTH-based applications are invoked through BASIC keywords.
The keywords invecke FORTH words which do the actual processing.

The ADF is a TEXT file which contains a complete description of the
application, including the information necessary to create the LEX file
containing the BASIC keywords. The ADF can be created using the Text
Editor in the FORTH/Assembler ROM.

The Soft FORTH procedure refers to specific lines of the ADF. The ADF
is described in detail later in this document.

2.3 Using the Soft FORTH systenm

-To use the Soft FORTH system, the 64K RAM must be in the HP-71 and set
up as a single Independent RAM (IRAM) using the HP-71 FREE PORT command.

NOTE: For HP-71B with VER$=1BBBB, there is a bug may affect Soft FORTH users
It shows up only if there are IRAM(s) in the HP-71B which have a chip
size of 32K bytes, the first IRAM containing 32K byte chips has two

or more chips, and the system does NOT include a FORTH/hssembler Module.
Both the 64K and 96K RAM modules from Hand Held Products have a

chip size of 32K bytes.

For Soft FORTH, there must be one IRAM of at least 64K bytes, so the
FORTH/Assembler module must be present when using the

64K RAM module from HHP as an IRAM.

The 96K RAM module is usable without the FORTH/Assembler module if

the PORT(5) is 32K bytes and PORT(5.01) is 64K bytes,

For applications which do not require the use of an additional 16K TIRAM
(less than 32K of FORTH code), the Soft FORTH kernel file (SFTFORTH48)
should be copied into the 64K IRAM first. The headers file ( FORTHEADL1G)
should be copied into the 64K IRAM after the kernel file.

1

Page 2-2 The Development Process
; <<Preliminary>>




If the application-requires the use of the additional 16K TIRAM (for a
Custom ROM of 64K), the Soft FORTH kernel (SFTFORTH64) should be copied
into the 64K IRAM. The headers file (FORTHEAD16) should be copied into
4 separate 16K IRAM,

The ADF should be created at this point (if it has not been created
already) .

When the IRAM(s) and the ADF are set up, the Soft FORTH system is ready
for use. To enter the Soft FORTH environment :

>5FTFORTH

Soft FORTH signs on with the message:
HEF-71 Soft FORTH A

Once in the Soft FORTH environment, type:
" <ADF name>" MAKEROM

MAKEROM first uses the ADF to create the LEX file and BASTIC keywords
that will invoke the FORTH-based application. MAKEROM then compiles the
application into the 64x IRAM (the ROM image).

The portion of the application which is written in FORTH must be
compiled in one invocation of MAKEROM.

2.4 Debugging with Sorft FORTH

Two problems likely to be encountered while developing a Soft FORTH-
based application are the need to distinguish between RAM and ROM space,
and between relative ang absolute addresses. Most FORTH systems,
including the FORTH system used in the FORTH/Assembler ROM, intermix the
code and data structures., For ROM-based Soft FORTH, any data structures
which need to be changed must be pPlaced in RAM, separate from the FORTH
code. In addition, code addresses are no longer absolute. The soft-
configured ROM address can change whenever the HP-71 is turned on. This
forces addresses to be relative to the current IP (Instruction Pointer).

The application should be tested carefully after creating the IRAM ROM
image to verlfy that it performs correctly for all paths through the
code. Particular care should be taken to test code that uses data
structures other than the FORTH stacks.

The Development Process Page 2-3
<<Preliminary>>




Z=—i.1 The=Dbebug Version

To ease the transition between the FORTH/Assembler ROM and Soft FORTH, a
debug version of the Soft FORTH kernel is included. All FORTH-based
applications are compiled using this version of the Soft FORTH kernel.
This version includes a check in each word which writes to memory. Any
attempts to write to the IRAM containing the application code are
flagged and information to help track the error is displayed. The debug
version of the kernel is slightly slower than the ROM version, but is
suitable for most testing.

A version of the kernel which is identical to the actual ROM chip 1is
also included (ROMFORTH). This version can be used for testing of
time-critical code. To use the ROM version, use the SFTFORTH to create
the LEX file. Copy the application LEX file after executing ENDFORTH.
CLATM the port (CLAIM PORT), then FREE it again to clear it out. Copy
ROMFORTH to the port, followed by the application LEX file.

2.4.2 Debug Concerns

An application may modify the contents of the IRAM during compilation
(i.e. during the execution of the MAKEROM word). The debug version of
the kernel does not flag writes to IRAM during compilation. Checks for
writing to IRAM become active when the compilation is completed.

2.5 Copying the ROM Image

When the application works as desired in the soft-configured form, and
any additional BASIC, BIN, DATA, LEX, or TEXT files have been copied
into the 64K IRAM, the ROMCOPY keyword is used to copy the code to an
external device. ROMCOPY inserts the proper checksum values while
copying the file.

To find the locations of the checksums (required by ROMCOPY), use the
CHECKSUMS word in SFTFORTH before executing ENDFORTH (see the chapter on
Soft FORTH words for a description of CHECKSUMS).

2.6 Sample Session

This sample uses the debug version of the kernel, and illustrates a 48K
byte FORTH-based application.

NOTE: If any error occurs during this process after MAKEROM has started,
it 1is necessary to restart the entire process. This includes CLAIMing
the RAM module(s) and FREEing them again. This is necessary because
MAKEROM modifies the SFTFORTH kernel.

Page 2-4 The Development Process
’ <<Preliminary>>




Free the RAMs to create the necessary IRAM erfironmemsEs™
>FREE PORT(5) ! Free the RAM module for FORTHEAD

>FREE PORT(5.01) ! Free the 64K RAM module

(Where 5 and 5.01 are the port numbers of the RAM)

Purge FORTHSYS, if it exists now, as well as any file with the
allocated name specified in the ADF.

Copy the FORTH kernel and the keyword creation code inte
PORT(5.01).

>COPY SFTFORTHG4:TAPE TO :PORT(5.01) ! Copy kernel into 64K IRAM

SFTFORTH is a 64K byte file. It contains the 16K Soft FORTH
kernel, 16K of filler, code for the SFTFORTH keyword, and more
filler. The filler ensures that the header file goes at the right
address if it is copied into the 64K IRAM, and maintains file
system integrity while the FORTH code is being generated. The
filler is overwritten by the application's FORTH code. Tt may
take several minutes for SFTFORTH to be copied into IRAM.

Copy the headers into the IRAM (if this application was less than
32K bytes, the headers would go to PORT(5.01), and the kernel file
SFTFORTH48 would be used).

>COPY FORTHEADLG:TAPE TO :PORT (5)

Enter the Soft FORTH environment from BASTIC:

>EFTFORTH

This keyword searchs for the base address of FORTHEAD and SFTFORTH
{the FORTH Kkernel) and stores the addresses inte FORTHSYS
(FORTHSYS is created here by SFTFORTH).

Compile the application code:

" MYROM:TAPE" MAKEROM ( MYROM is the name of the ADF )

The headers are still available when the compilation is complete.
This allows testing of FORTH words directly,

**NOTE: The kernel version in IRAM at this point 1is the debug
kernel which identifies and prevents stores to the IRAM.

Exit the Soft FORTH environment by typing BYE or by turning off
the HP-71. This zeroes out the locations in FORTHSYS which point
to the header file and to the FORTH kernel.

The Development Process Page 2-5
<<Preliminary>>




9. Thoroughly debug the application using the newly creat@® BAsSIC®S"
keywords to inveoke the FORTH-based application.

10. If the application attempts to write to the ROM image, SFTFORTH
displays the address of the offending write and displays the
contents of the return stack at that peint.

11. If a problem is discovered, reenter the Soft FORTH environment:

>SFTFORTH

This resets the FORTHSYS locations which point to the headers and
the Soft FORTH kernel. This allows testing of FORTH words
directly. :

After identifying and fixing problems in the application source
code, restart the entire process from the beginning.

12. When satisfied that everything is correct, enter the Soft FORTH
environment once more to get the checksum addresses:

>SFTFORTH ! Oonly if currently in BASIC
DECIMAL CHECKSUMS ( Next line is a sample result )
101 22768 65567 0 OK { 0 }

These numbers are the offsets from the beginning of the ROM to the
checksums that are needed for the ROMCOPY statement.

The addresses are displayed in the current number base. They are
the offset of the one byte checksum fields left by Soft FORTH in
the TRAM. In this example, the application is between 32K+1 and
48K bytes long. The first checksum (101) is for the kernel.
These values are used later by the ROMCOPY statement.

13. . Once the application code is correct and the checksums are known,
finish the Soft FORTH conversion:

ENDFORTH ( Remove the headers, shrink the file, disable SFTFORTH )

l4. Copy any BASTIC, BIN, DATA, LEX, or TEXT files that are to be
included in the application ROM inte the IRAM (using the HP-71
COPY statement). HNote that if any file copied inte the IRAM
crosses a 16K byte boundary, an additional checksum is required.
See the ROMCOPY documentation for assistance in selecting a
location for this new checksum.

15. Copy the ROMCOPY LEX file from the mass storage device to the HP-
71:

>COPY ROMCOPY:TAPE

1

Page 2-=6 The Development Process
: <<Preliminary>>




and use the ROMCOPY statement to copy the ROM image from the 64K

IRAM to the mass storage device (see the ROMCOPY documentation for
the syntax of the ROMCOPY statement).

The Development Process Page 2-7
<<Preliminary>>




CHAPTER 3
The End Product

The end product is a Custom RoM containing 32, 48 or 64K bytes of code
consisting of the 16K byte soft-configqured FORTH kernel, the FORTH-based
application along with the BASIC keywords which invoke it, and any LEX,
BIN, or BASIC files that were copied into the IRAM.

Soft FORTH-based applications do not require that the FORTH/Assembler
ROM be present in order to run. Any number of Soft FORTH-based
applications may co-exist in the HP-71.

3.1 CcCalling BASIC

If the application makes use of the FORTH to BASIC capability
(specifically BASICX) then those statements which invoke BASICX must be
nNon-programmable. This is because the FORTH and BASIC envirenments are
not reentrant; the application cannot be started from BASIC, exercise
FORTH, have FORTH exercise the BASIC system through BASICX, return to
FORTH and then return to a running BASIC program. This restriction also
applies in the FORTH/Assembler ROM: FORTHX (a BASIC keyword) may not
invoke BASICX from within FORTH.

3.2 RAM Files

A Soft FORTH-based application interacts with 2 FORTH-type RAM files.
The first, called FORTHSYS, takes the place of FORTHRAM. It contains
the FORTH system variables, the Terminal Input Buffer, the Data and
Return stacks, the floating point stack, and the Mass Storage buffers.
It resides as the first file in memory just as FORTHRAM does, and it
requires approximately 1100 bytes of memory. FORTH-based application
ROMs must not make any assumptions about the contents of user wvariables
(such as BASE or SECONDARY) since other FORTH-based application ROMs may
have used FORTHSYS and left the variables with different values,

The second file is unigue to each application; it contains the variables
and data structures (defined by the application) needed to run the
application. To avoid a conflict between two different applications,
the name of this file is an allocated resource (just as are LEX ID and
token numbers). See the section on Allocated Resources in the next
chapter for more details.

The End Product Page 3-1
<<Preliminary>>




3.3 Application FORTH-Type RAM Fif& i

The Soft FORTH kernel contains the code to create and maintain a FORTH-
type RAM file for a particular FORTH-based application. However, it is
the responsibility of the application to initialize any user wvariables
it requires before it begins te run.

Page 3-2 The End Product
i <<Preliminary>>




CHAPTER 4
Implementation Details

4.1 The 64K RAM module

This module must be configured as independent RAM. This creates a
contiguous 64K block of RAM into which the application is compiled. The
soft-configured FORTH system (either SFTFORTH or ROMFORTH) 1is copied
from the provided cassette or dise into the first part of this IRAM. A
second file (FORTHEAD) contains header information for the system words
which are called by an application. For an application of less than 32K
bytes, FORTHEAD is copied into the last 16K of this IRAM.

4.2 ADF Format

The parameters for the MAKEROM word are contained in a TEXT file
(created wusing the HP-71 Text Editor). 1If there is a mistake in the
file (e.g. an invalid parameter), the Soft FORTH program displays an
error message and exits. If an error is generated by Soft FORTH,
correct the ADF and start again at the beginning. All numeric values in
the ADF are base 10 (decimal). The format of the file is:

Line Contents

1 Name of the unique FORTH-type RAM file *

2 Name of the application file to LOADF

3 Name of the LEX file which will contain the
BASIC keywords which invoke the application

4 LEX ID for the LEX file specified in line 3 *
followed by the VERS respaonse

5 Token number for the first BASIC keyword: *

Soft FORTH automatically increments by
one for subsequent keywords

G Description of the first BaASIC keyword *
7 Description of the second BASTC keyword *
N Descéiption of the last BASIC keyword *

* Resources allocated by HP

Implementation Details Page 4-1
<<Preliminarys>




4.2.1 ADF Details ——_—— &

The first line of the ADF is the name of the unigue FORTH-type file
which has been allocated by HP for this application.

The seccond line is the name of the file to LOADF when MAKEROM is
invoked. If multiple files are to be LOADed, create a dummy file
containing a LOADF for each file, and put the dummy file's name here.
This file may reside on a mass storage device.

The third line is the name to be given to the LEX file in the ROM image.

There are no restrictions on the filenames in lines two and three other
than that they be legal HP=71 filenames.

The fourth line contains the LEX ID allocated by HP and the VERS
response for the application.

The fifth line is the beginning token number allocated by HP.

4.2.2 BASIC Keyword Compilation

Line six and all following lines of the ADF describe the BASIC keywords.
Each line contains the text which invokes the keyword allocated by HP,
its characterization nibble in decimal, and the FORTH word associated
with the keyword (FORTHword).

The keywords MUST be in alphabetical order, as specified in the HP-71
Scoftware IDS, Volume I, section 6.1.

If the keyword is a function, the kind of function (Ftype) and the
number of parameters in decimal (numpar) are included next. The line
ends with the appropriate number of parameter descriptions (ptype).

FUNCTIONS:
keyword charactization FORTHword Ftype numpar ptype ptype

ALL OTHER KEYWORDS:
keyword charactization FORTHword ptype ptype

Both the kind of function (Ftype) and parameter description (ptype)
are defined as one of:

F (for floating point)
I (for integer)
5 (for string)

If the application makes use of the FORTH to BASIC interface, BASICX, it
is the responsibility of the application to be sure that the keyword
which invokes this application is non-programmable. This 1is done by

1

Page 4-2 Implementation Details
<<Preliminarys>




provigagywmg an ampropriate characterization nibble (see the HP-71 Software
IDS, Volume I, Chapter 6).

The HP-71 operating system allows functions to have a variable number of
parameters and to have several possible types for each parameter. The
Soft FORTH system does not support this capability.

4.2.3 ADF Example

As an example, here is an ADF for a file with two keywords.

The FORTH-type RAM file name allocated to this application is
"ALLOCATD",

The file containing the FORTH code is named "FTHCODE",

The LEX ID allocated to the LEX file is sc (hex) = 92 (decimal), and the
tokens allocated to the LEX file are 7 and 8.

The VER$ response of this application is "EXM:A".

The first keyword is a statement (COMPUTE) with three parameters: a
string, an integer, and a floating point number, respectively. It
invokes the FORTH word DOCOMPUTE. The second keyword (STRIPS) is a
string function with 2 parameters: a string and an integer. The FORTH
word for STRIPS is DOSTRIP.

The name of this LEX file is to be "LEXDEMO",
The ADF loocks like this:

ALLOCATD

FTHCODE

LEXDEMO

92 EXM:A

5

COMPUTE 13 DOCOMPUTE S I F
STRIPS 15 DOSTRIP S 2 8 T

4.3 Word Headers

In FORTH, each word has a header.

FORTH Header Size
Link field 5 nibbles
Name field 2 + Length of word in nibbles
Code address field 5 nibbles
1
Implementation Details Page 4-3

<<Preliminary=>>




The limk=field :=oifts to the next word in the dictionary. The name
field contains the word name, length nibble, smudge bit, and immediate
execute bit. The code address field points to executable code for the
word in gquestion.

The header is used to compile new words and to find the executable code
for words typed in during execute mode. It takes a minimum of 7 bytes
of code space for a header, and the header is 11 bytes for a 5 character
word.

Headers are usually linked in a serial list, with new words added at the
head. When searching for a word, all words which were defined after
that word are examined (regardless of their length) before the desired
word 1s found. This can significantly slow down the compilation of new
definitions.

Soft FORTH separates the headers from the code during the compilation
process.

Small Application without separate 16K RAM
(<32K bytes of code)

64K RAM Module
(high address)

| FORTH |

code |

{low address)

Page 4-4 Implementation Details
: <<Preliminary>>




Large Application with 16K RAM for FORTHEAD i
(>32K bytes of code)

16K RaM Module

64K RAM Module
(high address)

T e e et

[ [
- FORTH -
| application |
- code =
| I

S e e e e s e e

(low address)

Headers are located via a jump table with 32 entries (legal word lengths
are 0 to 31). Each entry points to a linked list of words of that
particular length. New entries are added to the head of the appropriate

list and the jump table is updated. In this fashion user defined words
are found before system defined words.

The advantages of the Soft FORTH header scheme are

1) it significantly speeds up compilation of the application, and
2) the headers do not take code space from the application.

The headers remain in the IRAM until the ENDFORTH word is used so that
they are available for debugging purposes.

The Soft FORTH code address field is relative to the start of the kernel
file.

Implementation Details Page 4-5
<<Preliminary>>

*,l




Sample Soft FORTH Headers =T (FieHHT

s e s e e e B s TS e e . s 2 e . s e

REL(5) =!PREV {Link)
IBASE CON(2) #84 BASE (Length&bits)
NIBASC \BAS\ {Name)
CON(2) NEN+#80
CON(5) (=BASE)-(offset) (Code offset)
*
REL(5) =!BASE (Link)
! THEN CON(2) #c4 THEN (IMMEDIATE) (Length&bits)
NIBASC \THE\ {Name)
CON(2) \N\+#80
CON(5) (=THEN)-(offset) (Code offset)

*

The Soft FORTH system uses 6647 nibbles of the 16K bytes allocated for
headers, including the FORTHEAD file header, the jump table, and the
words defined by Soft FORTH (the FORTH/Assembler words plus the unicgue
to Soft FORTH words). This leaves 26121 nibbles for user defined words.
If the average word header +akes 20 nibbles (4 chars/word), an
application can define about 1306 words before running out of header
space. If the FORTHEAD32 header file is used, the space available for
user defined words is 58889 nibbles, or about 2944 words.

4.4 Allocated Resources

LEX ID's, token numbers, keywords, and unique FORTH-type RAM file names
are resources which are allocated by HP. For information about
obtaining allocated resources, see the HP-71 IDS, Volume I, Chapter 18.

4.4.1 LEX ID's and Token Numbers

The application must have token numbers allocated for each of the BASIC
keywords which invoke the FORTH-based application software. The token
numbers must be contiguous. The starting token number is conveyed to
the Soft FORTH system via the ADF. The ADF also contains the
information needed to create the BASIC keywords which are used to invoke
the FORTH-based applications.

4.4.2 The Unique FORTH-Type RAM File

All variables and data structures created during the compilation of the
application exist (at runtime) in a FORTH-type RAM file. The name for
this file is conveyed to the Soft FORTH program via the ADF.

The name of the unigue file is embedded in the applicatian ROM by
MAKEROM. The Soft FORTH kernel ensures that both FORTHSYS and the
application's unique RAM file exist whenever the application is invoked.

Page 4-6 Implementation Details
: <<Preliminary>>




If FORTHSYS doessTot ex#%F~ it is created and initialized. If the
application's unique RAM file does not exist, it is created and
initialized to zeros; the application code must ensure that the file is
initialized upon entry to any keyword. This could be done by reserving
a variable which is set to a non-zero value when the file is properly
initialized by the application program.

Each time the application accesses data from this file, the starting
address of the file must be known. The FORTHSYS file has a location
which contains the address of the unigque RAM file. APFILE is one of the
Soft FORTH words which uses this location. The address is updated every
time the file might have moved. The following Soft FORTH words can
cause the file toc move:

ADJUSTF ASSEMBLE BASICF
BASTICI BASICX BASICS
CREATEF GROW SHRINK

<the configure poll>

Space is allocated in this file by use of the NALLOT-RAM word. It is
necessary to distinguish between RAM and ROM when allotting extra space
for data structures.

4.5 Primitives

Soft FORTH uses the assembler in the FORTH/Assembler ROM (which must be
present in the HP-71 during the compilation process). The process of
invoking the assembler in the FORTH/Assembler is as follows:

1. If the space between the Terminal Input Buffer (TIB) and the
bottom of the Soft FORTH return stack (which is a higher address
than the top of the return stack) is not at least 475 nibbles then
ASSEMBLE increases the space by 75 nibbles. The default size of
this space is 400 nibbles. This allows 15 additional return stack
levels which are needed because the MAKEROM word does a LOADF
which in turn does an ASSEMBLE. The assembler checks to make sure
that it is not extending into the TIB area. TIf it is extending
into this area it will error with the "Invalid expression" error
message (admittedly not the most informative of messages) .

2. If the space between the Data Stack and PAD is less than 4564
nibbles (84 bytes for PAD, 60 items on Data Stack, plus 2K bytes
dictionary), ASSEMBLE will GROW the FORTHSYS file to allow for a
2K byte dictionary.

3. Copy the FORTH vocabulary word (which hard FORTH expects as the
first word in the RAM dictionary) into FORTHSYS at DICTST
(#302ED) .

Implementation Details Page 4-7
<<Preliminarys>=




10.

*DICTST is here. *07T 5 T
CON(5) o] No previcus RAM words
CON(2) #C5 immediate word, 5 chars long
NIBASC  \FORT\
NIBASC SHAZ+HED

CON(5) #E7160 DOVOCabulary prologue

CON(2) #B1 fake header retained for

CON(2) \ \+#80 historical purposes

CON(5) (=DICTST)+5 last word in this vocabulary,
* points back to #C5 FORTH

CON(5) o} no other vocabularies

Save the runtime addresses for the vectored words in the SFTFORTH
kernel, and set these locations with the default runtime addresses
of the hard FORTH vectored words (obviously, this can only be done
when the SFTFORTH kernel is in IRAM).

Set CONTEXT and CURRENT (which have no meaning in Soft FORTH) to
point at the word 1link in the FORTH word {(i.e. the CON(5)
(=DICTST)+5).

Set the vocabulary link, VOC-LINK, to point to the vocabulary link
in the FORTH word (i.e. the CON(5) 0 which follows the word link) .

Eenama FORTHSYS to FORTHRAM.

Save the current dictionary pointer (DP), the instruction pointer
(I); and the ROM image base address on the FORTH return stack.
The ROM image base address is normally stored in the user variable
FENCE, which has no meaning in Soft FORTH.

Set up the 10 nibbles in the SFTFORTH kernel which follow the call
to the hard addressed Assembler to look like a FORTH word
sequence. For example, assume that the 10 nibbles in gquestion
start at 40000. When done, the 10 nibbles look like the following:

Address Contents
40000 40005
40005 4000A
4000A <code>

Put the return address on the FORTH return stack. In this example
the return address is 40000.

Set up the FORTH instruction pointer (I) to point to a fake word
which essentially contains the execution address of the Assembler
and the SEMI word.

At this point the hard FORTH assembler begins assembling the given file.

]

Fage 4-8 Implementation Details

<<Preliminary>>




Khkhhh ko ko khdh ko h kA Ak kkh ke k ke k kR R Rk Rk kh ok Rk ok ok hdek ke k ok de ke d ok
* IF THE ASSEMBLER IS5 ABORTED WHILE ASSEMBLING, SOFT FORTH *
* LOSES CONTROL TO THE FORTH/ASSEMBLER ROM. IF THIS OCCURS, *

* IT IS NECESSARY TO RESTART THE ENTIRE SOFT FORTH PROCESS. *
B ko ok ke o e ok ok ok e e ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ke ok ok ok o ok ok ok ok ok ok ok e ek o

When the assembler has finished, it returns to Soft FORTH via the
following process:

1. Rename FORTHRAM to FORTHSYS.

2. Restore from the return stack the Soft FORTH DP, I and ROM image
base address (the ROM image base address is stored in the user
variable FENCE which has no meaning in Soft FORTH).

3. Restore the runtime addresses of the vectored words.

4. Enter a BEGIN WHILE REPEAT loop which moves the headers of any
words defined by the assembler (it could have only been defining
LEX files) into the appropriate place in the header file. The
loop also sets the prologue of each primitive to CON(5) 5 (this is
a relative offset to the parameter field from the code field).

5. Move all of the code generated by the assembler into the ROM image
as one block, headers and all. It is necessary to waste the space
for the headers because all relative jumps and GOSUBs include the
space taken up by intervening headers. Removing them means it
would be necessary to effectively re-assemble all the code.

6. Run the do-checksum word to allocate any needed checksums.

4.6 Checksums

The Soft FORTH kernel contains a word (CHECKSUMS) and two data
structures to automatically reserve space for checksum bytes. The
CHECKSUMS command is defined as:

CHECESUMS O o B e 0 WD . 3
This is the state of the CHECKSUMS word when the Soft FORTH kernel is
first copied into the 64K IRAM. The CHECKSUMS word initially displays
four zeros.

4.6.1 Implementation of CHECKSUMS

The location of each of the zeros is known internally, and is used by
the code that actually allocates the checksum bytes,

Two locations are vreserved within the kernel for processing the
]

Implementation Details Page 4-9
<<Preliminarys>




checiZszums: - T

HIBi BSS 1 This nibble determines how many checksums have been

allocated. Zero means the checksum code needs to be
initialized. NIBi is zero in the SFTFORTH kernel as
distributed.

NIBADR BSS 5 This location contains the last address at which a
checksum was allocated, ANDed with #FB00O. If no
checksums have been allocated, +this locatien contains
zZero.

Every time that the colon word ":" is executed, the internal word DOCHSM

is executed.

The first time DOCHSM is executed, NIBi contains 0. This indicates that
the checksum system needs to be initialized.

The current value of the dictionary pointer (DP) is ANDed with #F8000;
this becomes the initial wvalue of NIBADR.

The first checksum offset is set to point te a location in the Soft
FORTH kernel which is reserved for a checksum.

The second checksum offset is set to the current value of DP, since the
first user definition must be in the second ROM chip (the first ROM chip
is the Soft FORTH kernel). The DP is incremented by 2 before returning
to colen to finish processing the ":",

Each of the four checksums in CHECKSUMS is compiled as:

REL(5) =LIT ( LITERAL)
CON(5) ©
REL(5) =DOT

Subsequent executions of DOCHSM progress as follows:
NIBi is non-zero: ne initialization is needed.

The current DP value is ANDed with #F8000 and compared with the contents

of NIBADR. If they match, no further action is needed, and DOCHSM
returns to coleon. If NIBADR and (DP AND #FB000) are not equal, HNIBADR
is set to (DP AND §FB000), NIBi is incremented and the checksum is

allocated as above.

The address for the Nth checksum offset is computed as:
(address of the first offset in CHECKSUMS) + (1§ * (H=13) ,
where N is the contents of NIBi.

Page 4-10 Implementation Details
' <<Preliminary>>




4.6.2

After
many

Using CHECKSUMS T T Oies

the application has been compiled, the CHECKSUMS word shows how
checksums have been allocated and the offset from the beginning of

the IRAM to each checksum.

DOCHSM is available as the Soft FORTH primitive DO-CHECKSUM for use by
user-created defining words.

4.613

L

Limitations and Precautions of CHECKSUMS

In order to eliminate problems arising from creating a definition
before executing the MAKEROM word, NIBi, NIBADR and all 4 checksum
location holders in CHECKSUMS are zeroed whenever MAKEROM is
executed.

The DOCHSM word has also been added to the Assembler, but the
DOCHSM happens only after any code generated is moved into the
IRAM.

This scheme assumes that an application does not create a word
which is longer than 16K bytes.

Implementation Details Page 4-11
<<Preliminary>>




CHAPTER 5
Limitations in Soft FORTH

5.1 calling BASIC

If the applications make use of the FORTH to BaSIC capability
(specifically BASICX) then these statements must hbe non-programmable.
This is because the FORTH and BASIC environments are not reentrant: the
application ecannot start in BASIC, exercise FORTH, have FORTH exercise
the BASIC system through BASICX, return to FORTH and then return te a
running BASIC program. This restriction also applies in the
FORTH/Assembler ROM: FORTHX (a BASIC keyword) may not invoke BASICY from
within FORTH.

5.2 Calling Other FORTH-based Applications

The restriction that words which call BASIC must be non-programmable
also applies when one FORTH-based application calls another FORTH-based
application. Since FORTH-based applications are invoked through BASIC
keywords, the only way one can call another is through BASICX. This
means that if one application keyword calls a second application, the
first application keyword must be nonprogrammable.

Special efforts are necessary to return from calling another FORTH-based

application. Since both applications share the same FORTHSYS file, the
called application clears the active flag in FORTHSYS and the calling
application does not regain control. To avoid this, the calling

application must rename the FORTHSYS file to something else during the
call, and restore it before the return:

" RENAME FORTHSYS TO FS @ DOFORTH @ PURGE FORTHSYS @
RENAME FS TO FORTHSYS" BASICX

5.3 calls from the Forth/Assembler ROM

FORTH based applications created via Soft FORTH may be called from FORTH
(the FORTH/Assembler ROM) via the FORTH to BASIC words. As an example,
Suppose a FORTH based application is exercised via the keyword MYWORD.
Enter the hard addressed FORTH environment and execute

" MYWORD" BASICX ( or BASICI,BASICF,BASICS )

MYWORD executes, but control returns to BASIC, not FORTH.

Limitations in Soft FORTH Page 5-1
<<Preliminary>>




When MYWORD is executed, the FORTHSYS file 1s created (or moved) so that
it is the first file in memory (displacing FORTHRAM). When the line
containing MYWORD finishes, the HP-71 issues the main loop poll. When
the FORTH/Assembler ROM sees the poll, it sees that FORTHRAM is not the
first file in memory and decides that FORTH is not active.

One way to execute MYWORD and return to FORTH is
" MYWORD @ PURGE FORTHSYS" BASICX

This restores FORTHRAM as the first file in memory and allows FORTH to
regain control at the main loop peoll.

This will work only for Soft FORTH words which do NOT call BASIC through
BASICX.

Page 5-2 Limitations in Soft FORTH

<<Preliminarys>>




CHAPTER 6
Soft FORTH Words

etk O T

6.1 Words not present in Soft FORTH
These words which are in the FORTH/Assembler ROM are not in Soft FORTH:

DEFINITIONS
FORGET
FORTH
FORTHS
FORTHF
FORTHI
FORTHX
VOCABULARY

DEFINITIONS, FORGET, FORTH, FORTHX, and VOCABULARY are not meaningful in
the Soft FORTH environment.

FORTHS, FORTHF, and FORTHI have been replaced by SFORTHS, SFORTHF, and
SFORTHI, respectively.

Soft FORTH does not include any of the keywords contained in EDLEX,
DEGLEX, or KEYBOARD. These words are:

EDLEX KEYBOARD DBGLEX
DELETE # ESCAFPE DEBUG
EDPARSES KEYBOARD IS

EDTEXT RESET ESCAPE

FILESZR

INSERT#

M5GS

REPLACE#

SCROLL

SEARCH

6.2 New Words present only in Soft FORTH
These words are similar in function to the FORTHx words:
SFORTHS SFORTHF SFORTHTI

These words are not in the FORTH/Assembler ROM, but have been added
because Soft FORTH requires them:

]

Soft FORTH Words Page 6-1
<<Preliminary>>




=  REL APFILE CHECK CHECKSUMS

CREATE-RAM DEBUG DO-CHECKSUM ENDFORTH
MAKEAP MAKEROM NALLOT-RAM NXTHED
NXTVAR ROMADD STRING-ROM UNDEBUG
 REL +REL ( n --- ) converts an absolute address (of a CFA) into

a offset from the beginning of the Soft FORTH kernel and
compiles it into the ROM image.

APFILE APFILE ( n --- address ) finds the address of the start of
data in the wunigque FORTH type RAM file and adds n to 1 ol
producing the address of the desired data structure. N is

the offset into the unique FORTH type RAM file.

CHECK CHECK ( address --- address ) tests the target address of
FORTH words which write to memory to ensure no writes access
the IRAM (ROM image). If the DEBUG flag is not set, CHECK
does no checking. The target address is compared with the
address of the Soft FORTH kernel. If the target address is
within the range starting at the address of the kernel and
extending for 64K bytes, CHECK prints out the items on the
FORTH return stack and goes to QUIT. CHECK leaves the system
in interactive Soft FORTH, where the contents of the data
stack can be printed out. It is assumed that the CHECK code
is only exercised when headers are available and the
development environment is active.

In the ROM version of Soft FORTH (ROMFORTH), CHECK returns
immediately.

CHECKSUMS CHECKSUMS ( --- ) displays the offset from the beginning of
the IRAM to the one byte fields allotted Ffor use as
checksums. One field is allotted for each 16K byte chip.
If no code has been written into a 16K byte chip the
CHECKSUMS word returns a 0 in that position.

CREATE-RAM CREATE-RAM ( --- ) creates a dictionary entry which points
into the RAM file.

DEBUG DEBUG ( --- ) sets a flag (a nibble in FORTHSYS: oDEBUG)
signifying "debug on" and saves the current dictionary
pointer in FORTHSYS wvariable oROMDP, resetting DP into
FORTHSYS (at DICTST).

DEBUG is a no-op in the ROM wversion of Soft FORTH

{ROMFORTH) .

DO-CHECKSUMS DO-CHECKSUMS ( --- ) causes a checksum byte to be allocated
if the DP has crossed into a new ROM chip since the last
checksum was allocated. DO-CHECKSUMS is called by ‘tten . and

is included in Soft FORTH for use in new defining words.

Page 6-2 Soft FORTH Words
« <<Preliminarys>




ENDFORTH

MAKEAP

MAKEROM

NALLOT-RAM

NXTHED

HXTVAR

** & CAUTION

ENDFORTH ( --- ) finishes the process started by MAKERGH=
ENDFORTH collapses the application LEX file to the minimum
size needed, and removes the header file. It also changes
the SFTFORTH kernel file so that the SFTFORTH statement is
no longer recognized.

MAKEAP ( --- ) creates the unigque FORTH-type RAM file.
MAKEARP assumes that the information pPreceding the text table
in the application LEX file has been set up. It takes the
file size parameter and the file name parameter and creates
the file (if it doesn't already exist).

Since this is done automatically each time a FORTH based
application is executed there should not be any reason to
use this word, but it is here for any exceptional cases.

The information in the application LEX file required by
MAKEAP is set up by the MAKEROM word. The information is
used to prepare the unique FORTH-type RAM file before an
application keyword is executed,

MAKEROM (str --- ) creates a FORTH-based application, using
the information in the ADF (str). The SFTFORTH kernel file
is shrunk to 16K bytes when the applicatien is completely
loaded.

NALLOT-RAM ( n --- ) is used to allot additional space in
the FORTH type RAM file. NALLOT-RAM allots n nibbles.

AS an example, allot 25 nibbles for a data structure called
MYDATA (Note that VARIABLE allots 5 nibbles) :

HP-71 FORTH: VARIABLE MYDATA 20 NALLOT
Scoft FORTH: VARIABLE MYDATA 20 NALLOT-RAM

See the Soft FORTH definition of VARIABLE for another
example of how NALLOT-RAM is used.

NXTHED ( --- n ) returns the address of a wvariable which
contains the address of the next free nibble in the 16K byte
block containing the headers.

NXTVAR ( === n ) returns the address of a location (the 5
nibble field which Precedes the text table in the
application LEX file) which contains an offset to the next
free nibble in the user's FORTH type RAM file.

* & %k

NXTHED and NXTVAR should be used with great care. They are

Soft FORTH Words Page 6-3
<<Preliminary>>




ROMADD

STRING-ROM

UNDEBUG

provided to make it possible to create new defining words
(i.e. VARIABLE is a defining word). They have no
counterpart in HP-71 FORTH. NXTVAR is used by CREATE-RAM.

ROMADD ( n --- n+base ) finds the starting address of the
Soft FORTH kernel and adds this to n, producing the current
absolute address. N is assumed to be an offset from the
beginning of the Soft FORTH kernel.

ROMADD is typically used when dealing with the headers,
because the CFA offset is stored with each header. ROMADD
is used to compute the current absolute CFA for an
application that directly manipulates the headers.

STRING-ROM ( n --- ) works like STRING, except that the
space 1is allocated in the application LEX file instead of
the user RAM file.

UNDEBUG ( --- ) tests and clears the debug flag in FORTHSYS.
If the debug flag was set, reset DP to the value saved in
CROMDP by DEBUG. See DEBUG for more information.

UNDEBUG is a no-op in the ROM version of Soft FORTH
(ROMFORTH) .

6.3 Words Which Changed in Soft FORTH

The following words have changed with respect to the FORTH/Assembler

ROM:

(']

ABORT
ABORT"

DOES>

FIND

GROW
INTERPRET
SHRINK
STRING
STRING-ARRAY
VARIABLE
(ONERR)

6.3.1 ' (TIC)

TIC returns one of two results, depending on the current mode. Execute

mode TIC

returns the absolute address of the word specified, while

compile mode TIC returns the offset from the start af the ROM to the

]

Page 6-4

Soft FORTH Words
<<Preliminary>>




word. =k

6.3.2 ['] (BRACKET TIC)

BRACKET TIC compiles the offset from the start of the ROM to the word.

6.3.3 ABORT

ABORT and ABORT" exit the FORTH environment after executing. This is
absolutely necessary, since there is no FORTH ocuter loop available to a
FORTH based application.

If the ONERR location is set, ABORT and ABORT" will use its contents as
a CFA. See "(ONERR)" below for more details.

The FORTH/Assembler module manual indicates they do not use ONERR, but
the FORTH/Assembler code does look at ONERR.

6.3.4 DOES>

DODOES has been removed from the 16K Kernel and placed in FORTHSYS. The
defining word DOES> compiles <;CODE> followed by a GOSBVL =DODOES. This
GOSBVL is necessary because of the way <;CODE>, DODOES and DOES>
interact. A GOSUBL is not acceptable because only words defined within
16K bytes of the 16K kernel could have successfully used DODOES due to
the range limitations of GOSUBL. FORTHSYS represents the only fixed
address space available to Soft FORTH, so DODOES has been added to it.

The headerless word PFA which was only used by <;CODE> has been removed.

6.3.5 FIND

FIND returns the current absclute CFA.
NOTE: FIND i1s ONLY useful during compilation since it requires the
presence of the headers to be useful.

6G.3.6 GROW and SHRINK

GROW and SHRINK grow and shrink the FORTHSYS file. SFTFORTH allows the
minimum of space in FORTHSYS when it creates it.

Applications may grow and shrink the FORTHSYS file at run time. Since
every FORTH based application uses the same FORTHSYS file, each
application must use GROW and SHRINK in balance such that FORTHSYS is
left with the same size.

1

Soft FORTH Words Page 6-5
<<Preliminary>>




6.3.7 INTERPRET

INTERPRET is also only useful during the compilation process.
NOTE: INTERPRET is ONLY useful during compilation since it requires the
presence of the headers to be useful,

6.3.8 BSTRING

During compilation the following information is compiled inte the
application ROM image:

5 nibbles: <DOSTR> Relative coffset to the
string handling prologue

5 nibbles: <offset> Offset that, when added to
the starting address of the
unigque FORTH-type file,
points to this string

2 nibbles: <max len> Maximum number of bytes this
string variable can contain.

In addition, (max+2)*2 nibbles are allotted (using
NALLOT-RAM) in the application's unique FORTH-type file.

Whenever the string is accessed (i.e. the DOSTR prologue is executed)
the <max len> compiled into the ROM image is written to the <max len>
field in the RAM file. The string address and the <current len> are
then pushed onto the data stack.

This is done because string operators require that strings have the
form:

<maximum length> <current length> <string>

The unique FORTH-type RAM file may have just been created (i.e. the
BASIC keyword which exercises the FORTH-based applicatien may have just
been executed). When the file is created, it is set to all zeros.
Writing the maximum length to the RAM file each time ensures that other
string words will function correctly.

56.3.9 ETRING-ARRAY

STRING-ARRAY: During compilation the following information is compiled
into the ROM image:

Page 6-6 Soft FORTH Words
§ <<Preliminary>>




5 nibbles: <DOSTRA> Relative offsét to the
string array prologue

5 nibbles: <offset> Offset that, when added to
the starting address of the
unique FORTH-type file,
points to this string array

2 nibbles: <max len> Maximum number of characters
allowed in each array element

2 nibbles: <dim> Array dimension

In addition, (max+2)*dim*2 nibbles are allotted (using
NALLOT-RAM) in the application's unique FORTH-type file

Whenever the string-array is accessed the DOSTRA code compares the <max
len> compiled into the ROM image and the first <max len> field in the
string-array.

If the <max len> fields are different, DOSTRA assumes the string-array
has not been 1initialized, and initializes each <max len> field in the
array with the <max len> value compiled into the ROM image.

The reguested element is then found, and the address and current length
of that element are returned on the data stack.

6.3.10 VARIABLE

The FORTH/Assembler ROM definition of VARIABLE is

: VARTABLE CREATE 5 NALLOT ;

The Soft FORTH definition of VARIABLE is

: VARIABLE CREATE-RAM 5 MALLOT-RAM ;

6.3.11 (ONERR)

The FORTH/Assembler interprets the contents of ONERR as a CFA, if non-
Zero. Soft FORTH examines the value first. If the value is less than
20000 Hex, the base address of the application Rom is added to the
value, and the result is used as the CFA.

Soft FORTH has also changed the way BASIC's ON ERROR works with FORTH.
First, a description of how the FORTH/Assembler module works. There are
three different ways to trap an error:

1

Soft FORTH Words Page 6-7
<<PFreliminary>>




1. A BASIC program—calls F@RTH via FORTHX with ON ERROR in effect.

2. A FORTH program calls BASIC via BASICX, BASICS, BASICI, or BASICF.
The FORTH ONERR location is set to the CFA of an error routine.

3. A FORTH program calls BASIC via BASTICX, BASICS, BASICI, or BASICF.
The BASIC program traps errors via ON ERROR.

Both the FORTH/Assembler module and Soft FORTH are able to detect only
two of the three cases, FORTH/Assembler handles cases 1 and 2: any use
of case 3 will fail. Soft FORTH handles cases 2 and 3; any use of case
1 will fail. This change was made because Soft FORTH does not have
FORTHX, and any keywords which use BASICYX are not programmable (=ee the
chapter on limitations in Soft FORTH) . If an application uses BASICS,
BASICF, or BASICI, it must be sure to trap any possible errors if any
calling program is to continue running.

6.4 Words which check for writes to ROM

Here is a list of the words which check for writes to ROM when DEBUG 1is
active:

CMOVE CHMOVE>
N! cl
HFILL FILL
HMOVE HMOVE>
STO ENTER

=+

These checks are not done in the ROM version of Soft FORTH (ROMFORTH) .

Page 6-8 Soft FORTH Words
. <<Preliminary>>




CHAPTER 7
FORTH/Assembler Definitions for Soft FORTH

This chapter provides definitions for those Soft FORTH words which are
needed to develop an application for Soft FORTH, using the
FORTH/Assembler ROM. These should be defined before compiling the
application with the FORTH/Assembler ROM.

+REL : REL , j

APFILE See note below

CHECK : CHECK ;

CHECKSUMS : CHECKSUMS 0 . 0 . 0 . 0 . ;

CREATE-RAM : CREATE-RAM CREATE .
DEBUG : DEBUG

DO-CHECKSUMS : DO-CHECKSUMS :

MAKEAP See note below

NALLOT-RAM : NALLOT-RAM NALLOT :

NXTHED See note below
HXTVAR See note below
ROMADD : ROMADD ;
UNDEBUG : UNDEBUG ;

*** Note: APFILE, MAKEAP, NXTHED, and NXTVAR have no counterpart in
FORTH. They must be added to the application code when it is to be used
with Soft FORTH.

NXTHED and NXTVAR are of use mostly to define new words, For NXTVAR,
the most common usage is 'NXTVAR @ ,'. If the application needs to use
NXTVAR, call it with another word, defined as follows:

: SETVAR NXTVAR @ , ; ( Soft FORTH definitioen )
SETVAR ; ( FORTH/Assembler ROM definition )

FORTH/Assembler Definitions for Soft FORTH Page 7-1
<<Preliminary>>




anl.;ise SETVAR in new defining words.

Page 7-2 FORTH/Assembler Definitions for Soft FORTH
. <<Preliminary>>




